P P SAVANI UNIVERSITY

Seventh Semester of B. Tech. Examination November 2022

SECH4021 Chemical Reaction Kinetics-II

21.11.2022, Monday

Time: 10:00 a.m. To 12:30 p.m.

Maximum Marks: 60

Instructions:

- 1. The question paper comprises of two sections.
- 2. Section I and II must be attempted in separate answer sheets.
- 3. Make suitable assumptions and draw neat figures wherever required.
- 4. Use of scientific calculator is allowed.

SECTION - I

BTL 6 Draw the various ill graphs for plug flow and mixed flow reactors. Q-1 In a reactor, some droplets ($C_{Ao} = 2 \text{ mol/liter}$) react ($A \rightarrow R$, $-r_A = KC_A^2$, k = 0.5[10] liter/mol.min) as they pass through a reactor. Find the average concentration of A remaining in the droplets leaving the reactor if their RTD is given by the curve.

- Drive the time required for complete conversion and fractional conversion for Q-2 shrinking core model assuming chemical reaction is rate controlling.
- [10] Q-3 Uniform-sized spherical particles UO, are reduced to UO, in a uniform environment with the following results:

If reaction follows the SCM, find the controlling mechanism and a rate equation to represent this reduction.

OR

Q-3 Gaseous A absorbs and reacts with B in liquid according to

 $A(g \rightarrow l) + B(l) \rightarrow R(l)$ $-r_{\rm A} = kC_{\rm A}C_{\rm B}$

in a packed bed under conditions where

 $k_{Ae}a = 0.1 \text{ mol/hr} \cdot \text{m}^2 \text{ of reactor} \cdot \text{Pa}$

 $k_{Al}a = 100 \text{ m}^3 \text{ liquid/m}^3 \text{ reactor} \cdot \text{hr}$

 $a = 100 \text{ m}^2/\text{m}^3 \text{ reactor}$

At a point in the reactor where P_A = 100 Pa and C_B = 100 mol/m³ liquid, E is 1 $H_A=10^5$ and K=10, $f_I=0.1$ m³ liquid/m³ reactor and $D_{AI}=D_{BI}=10^{-6}$ m²/hr.

(a) calculate the rate of reaction in mol/hr. m3 of reactor.

[10]

	(b) location of the major resistance (What % in gas film, liquid film, main body of liquid).			
Q - 4 (i)	Attempt any one RTD with E and F curve	[05]	1	1
(ii)	Non ideal reactors		1	1
Q-1	SECTION - II Explain the various unit operations used for the preparation of catalyst.	[05]	4	2
Q-2	Explain various catalytic reactors in detail.	[10]	4	2
Q - 2	OR , For catalytic reaction, the following rate concentration data are available; $A \longrightarrow 4R$	[10]	5	5
	$C_{\rm A}$, mol/liter 0.039 0.0575 0.075 0.092 - $r_{\rm A}'$, mol A/hr·kg cat 3.4 5.4 7.6 9.1			
	Directly from this data, and without using a rate equation, find the size of packed bed needed to treat 2000 mol/hr of pure A at 117°C (or CAo = 0.1 mol/liter, \in A = 3) to 35% conversion, all at 3.2 atm.			
Q-3	Drive the overall or global rate equation for catalytic reaction (LHHW model) assuming surface reaction step is rate controlling. OR			4
Q-3	For the reaction (A4R), determine the amount of catalyst needed in a packed bed reactor with a very large recycle rate (assume mixed flow) for 35% conversion of A to R for a feed rate of 2000 mol/hr of pure A at 3.2 atm and 117° C. For the reaction at this temperature	[10]	5	5
	$A \rightarrow 4R$, $-r_A' = 96 C_A$, mol/kg cat·hr , $C_{A0} = 0.1$ mol/liter and $\varepsilon_A = 3$.			
Q-4 (i) (ii)	Attempt any one Steps involved in solid catalytic reaction Catalyst components *******	[05]	4	2 2

CO : Course Outcome Number

BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply	31
4: Analyze	5: Evaluate	6: Create	